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Abstract: We analyze the structure of the UV divergences of the Wilson loop for a

general gauge/gravity duality. We find that, due to the presence of a nontrivial NSNS

B-field and metric, new divergences that cannot be subtracted out by the conventional

Legendre transform may arise. We also derive conditions on the B-field and the metric,

which when satisfied, the leading UV divergence will become linear, and can be cancelled

out by choosing the boundary condition of the string appropriately. Our results, together

with the recent result of arXiv:0807.5127, where the effect of a nontrivial dilaton on the

structure of UV divergences in Wilson loop is analysed, allow us to conclude that Legendre

transform is at best capable of cancelling the linear UV divergences arising from the area

of the worldsheet, but is incapable to handle the divergences associated with the dilaton

or the B-field in general. We also solve the conditions for the cancellation of the leading

linear divergences generally and find that many well-known supergravity backgrounds are

of these kinds, including examples such as the Sakai-Sugimoto QCD model or N = 1 duality

with Sasaki-Einstein spaces. We also point out that Wilson loop in the Klebanov-Strassler

background have a divergence associated with the B-field which cannot be cancelled away

with the Legendre transform. Finally we end with some comments on the form of the

Wilson loop operator in the ABJM superconformal Chern-Simons theory.
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1. Introduction

The AdS/CFT correspondence states the equivalence of string theory on AdS5 ×S5 to the

N = 4 supersymmetric Yang-Mills [1 – 4]. According to this correspondence, there exists a

map between gauge invariant operators in the field theory and states in the string theory.

The correspondence is well understood for the case of half BPS local operators where the

dual string states are D-branes in the bulk [5, 6]. Wilson loop operator is another class of

gauge invariant operator. In the limit of N → ∞ and large λ = g2N ≫ 1, the expectation

value of a special class of Wilson loops in the N = 4 SYM theory can be computed using

the supergravity dual picture in terms of a dual string worldsheet [7 – 9]. These Wilson

loop operator takes the form [7]

W [C] =
1

N
TrP exp

(
∮

C
dτ(iAµẋ

µ + ϕiẏ
i)

)

, (1.1)

where the trace is over the fundamental representation of the gauge group G, Aµ are the

gauge fields and ϕi are the six real scalars. The loop C is parametrized by the variables

(xµ(τ), yi(τ)), where (xµ(τ)) determines the actual loop in four dimensions, and (yi(τ))

parametrizes the coupling to the scalars. Moreover the condition

ẋ2 = ẏ2 (1.2)

is satisfied. The expectation value is given in terms of supergravity as

〈W [C]〉 = Be−
√
λĨ , (1.3)
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where the prefactor B has a dependence on the loop C which is subleading for large λ and

Ĩ is the Legendre transform of the worldsheet action I with respect to some of the loop

variables [9]. The Legendre transform is needed because some of the worldsheet scalars

satisfy Neumann boundary conditions instead of Dirichlet boundary conditions. The area

I has a linear UV divergence 1/ǫ since the metric has a scale factor which diverges as

one goes near the boundary. It was demonstrated that [9] the application of the Legendre

transform removes this UV divergence from the area and the result Ĩ is finite.

So far there has not been much discussions on the structure of the UV divergences and

their cancellation for Wilson loops in more general gauge/gravity correspondence beyond

the original AdS5 × S5 case. In a general supergravity background where the metric is

different from the simple AdS5 × S5 one, and where a nontrivial B-field and dilaton could

be present, there can be new kind of UV divergences. It is interesting to ask whether the

implementation of the Legendre transform can cure all the UV divergences or not. In [10],

the effects of a varying dilaton were analysed by including the Fradkin-Tseytlin term for the

dilaton [11]. It was found that new UV-divergent terms proportional to
√

1/ǫ and log 1/ǫ

occurs.1 Moreover these divergent terms cannot be subtracted away by the application of

Legendre transform. A direct subtraction is applied to extract a finite result. However,

the subtraction of the log-divergent term is associated with a finite ambiguity and further

physical input is needed to fix the supergravity prediction for the expectation value of the

Wilson loop. This is unlike the cancellation of the leading linear divergence in the Polyakov

action through a quadratic constraint on the loop variables, which has a nice geometrical

and physical interpretation.

In this paper, we focus on the gravity dual analysis of the UV divergences from a

nontrivial metric and B-field. The main motivation of our work is to provide a general

analysis of the kind of UV divergence that may occur in the Wilson loop correspondence

and to provide a prescription for their cancellation. We show indeed in general there

are new kinds of UV divergences associated with the metric and the B-field that cannot

be cancelled away by the Legendre transformation. However, when certain asymptotic

conditions for the metric and the B-field are satisfied, the leading UV divergence becomes

linear and one can cancel out the divergence with the Legendre transform by choosing the

open string boundary condition appropriately. Things are different for the B-field. We find

that the situation is similar to the dilaton: in general the divergences (if any) associated

with the B-field cannot be cancelled by the Legendre transformation.

Another motivation of this work is to understand the role of supersymmetry in the

holographic correspondence of Wilson loop in a general gauge/gravity duality. In the N = 4

case, the Wilson loop operator (1.1) preserves some amount of local Poincare supersym-

metry and is sometimes referred to as ”locally BPS”. One may wonder if the finiteness

of the Wilson loop is related to the preservation of local supersymmetry. Wilson loop

operator, being a nonlocal divergent functional, cannot be renormalized by the ordinary

R-operation [12] restricted to the local operators. The renormalization properties of Wilson

1These divergences were computed for the worldsheet associated with the Wilson line operator with

fermion bilinear insertion. However it is easy to see that these divergences are common to Wilson loop too.
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loop with pure glue has been studied in, e.g. [13 – 15], and it was found that, apart from

the conventional wavefunction and coupling renormalization, the only divergence in W [C]

is a factor e−KL, where K is a regularization dependent linear divergent constant and L

is the length of the loop. This is independent of the form of C and hence the Wilson loop

is multiplicative renormalizable. In N = 4 SYM there is no wavefunction renormalization

or coupling renormalization, thus the finiteness of the expectation value of the locally BPS

Wilson loop means that the multiplicative renormalization factor is finite. As is common

in a supersymmetric field theory, it is natural to associate the absence of renormalization

of this class of Wilson loop operators with the presence of local supersymmetry, and to

suspect that the later is responsible for it. It is thus interesting to consider Wilson loop

which preserves less or no local supersymmetry and check if this is correct.

In the previous paper [16], we started to investigate this question by considering the

Wilson loop correspondence in the Lunin-Maldacena duality [17]. The gauge theory is

given by a marginal β-deformation of the N = 4 SYM and has N = 1 superconformal

symmetries. Configuration of minimal surfaces that are dual to field theory Wilson loop

were constructed in [18]. We proposed a form of Wilson loop operator that is the dual of

these string configurations. We also found that, although these operators do not preserve

any local supersymmetry, they have finite expectation value (both in perturbation theory,

which we computed up to order (g2N)2, and from supergravity). In supergravity, the

absence of divergence is due to some special properties satisfied by the metric and the

B-field. In field theory, we called these operators ”near” local BPS in order to distinguish

them from generic non-BPS Wilson loops whose expectation values are infinite Although

the operator is non-BPS, still there is the possibility that the cancellation of the UV

divergence is due to the underlying N = 1 supersymmetric dynamics.

In this paper, we find that the finiteness of the Wilson loop has nothing to do with

supersymmetry at all. As in the AdS5×S5 case, the boundary constraint of the worldsheet

has an intermediate interpretation as a constraint on the loop variables of the field theory

Wilson loop operator. It is a pure coincidence that this loop constraint also implies a

preservation of local Poincare supersymmetry in the N = 4 SYM theory. In general, this

condition has nothing to do with preservation of any supersymmetry. In fact, as we will see,

the multi-parameters β-deformed supergravity background [19] is an example where the

Wilson loop expectation value is finite and where the background is not supersymmetric.

The plan of the paper is as follows. In section 2, we present our analysis of the UV

divergence in the supergravity Wilson loop associated with the B-field and the metric. In

general the divergence that may arises from the B-field coupling is of a different structure

from that in the Legendre transform and so cannot be subtracted away. For background

where such divergences are absent, the leading order divergence arises from the area and

it can be cancelled away using Legendre transform if certain asymptotic conditions are

satisfied for the metric and the B-field and if the boundary coordinate of the open string

satisfy a certain constraint. As a consistency check, we show that this loop constraint

guarantees that the loop equation is satisfied. Subleading divergences could be present in

general. We provide a stronger criteria on the supergravity background where the sublead-

ing divergences are absent and the Wilson loop is expected to be finite. In section 3, we
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analyze the conditions for the cancellation of leading divergence and show that they can be

solved quite generally. Some explicit backgrounds which satisfy these conditions are given

as examples. Many of them also satisfy the stronger form of the cancellation conditions and

so for these backgrounds, Wilson loop computed using the supergravity description (1.3) is

finite. As a final example, we consider the Klebanov-Strassler background and show that

the leading linear divergence in the area can be cancelled away as usual. However there

are subleading divergences of order (log ǫ)2 associated with the B-field and this cannot be

cancelled away with the Legendre transform. We end with some comments on the form

of the Wilson loop operator in the three dimensional N = 6 supersymmetric Chen-Simons

theory of Aharony, Bergman, Jafferis and Maldacena [20] (ABJM).

2. Structures of UV divergence in the Wilson loop in general supergravity

background

2.1 Conditions on the supergravity background and the string worldsheet for

cancellation of leading order divergence

Consider a general supergravity background. The string worldsheet is sensitive to the

metric, NSNS B-field and the dilaton. The structure of UV divergence associated with a

varying dilaton has been analysed in [10] and we will focus on analysing the effect of a

general metric and transverse B field on the UV divergences of the supergravity Wilson

loop. Denote the metric in the string frame as

ds2 = GµνdX
µXν +GijdY

idY j , (2.1)

where µ, ν = 1, · · · ,m denotes the indices of a m-dimensional spacetime; and i, j = 1, · · · , n
denotes the indices of a n-dimensional internal manifold. For this metric to be relevant

for a holographic correspondence, we assume that the metric has a (conformal) boundary

at Y = 0, where Y :=
√

(Y i)2 is the radial variable and is of length dimension. It is also

convenient to introduce the angular variables θi where Y i = Y θi with θi2 = 1. We will

assume that in the leading order in Y , the metric have the following asymptotic dependence

near the boundary:

Gµν =
hµν
Y α

+ · · · , Gij =
kij
Y β

+ · · · , as Y → 0 (2.2)

for α, β ≥ 0. Here hµν , kij are functions of θi only and · · · denotes subleading terms.

Next let us analyze the string boundary condition. Let (σ1, σ2) = (τ, σ) be the world-

sheet coordinates. The worldsheet action of the string is

I =

∫

Σ
d2σ(

√

det g − iBij∂1Y
i∂2Y

j), (2.3)

where gαβ = GIJ∂αX
I∂βX

J is the induced metric. We note that since the worldsheet is

an open one, the B field coupling itself is not invariant under the gauge transformation

δB = dΛ. In order to be gauge invariant, the B term should be supplemented with a
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boundary coupling
∫

∂Σ A. Without writing this term, we are assuming we are in a gauge

where A = 0 and B is the corresponding potential in this gauge. However how to fix this

choice of B-field is a subtle issue. Similar subtlety also arise in the computation of Wilson

loop expectation value using D3-brane dual where one need to know the form of the RR 4-

form potential C4 used in the WZ coupling of the D3-brane [21]. There a symmetry criteria

is used to pick a certain natural form of C4. We will assume that similar considerations

can be applied and the correct form of B field is used in the analysis below.

The equation of motion implies the Hamilton-Jacobi equation

Gij(Pi − iBik∂1Y
k)(Pj − iBjl∂1Y

l) +GµνPµPν = Gij∂1Y
i∂1Y

j +Gµν∂1X
µ∂1X

ν (2.4)

where

Pi = GijJ1
β∂βY

j + iBij∂1Y
j , Pµ = GµνJ1

β∂βX
ν . (2.5)

are the momentum and

Jα
β =

1√
g
gαγǫ

γβ (2.6)

is the complex structure (α, β = 1, 2) on the worldsheet. Substitute the conjugate momen-

tum, we obtain

kij
Y β−αJ1

α∂αY
iJ1

β∂βY
j + hµνJ1

α∂αX
µJ1

β∂βX
ν =

kij
Y β−α∂1Y

i∂1Y
j + hµν∂1X

µ∂1X
ν

(2.7)

near Y = 0.

One like to know how this equation put constraint on the boundary variables of the

theory. To do this we need the boundary conditions for the string coordinates. Suppose that

the Wilson loop is parametrized by (xµ(σ1), y
i(σ1)) and choose the world-sheet coordinates

such that the boundary is located at σ2 = 0. First we have the Dirichlet boundary condition

for the coordinates

Xµ(σ1, 0) = xµ(σ1). (2.8)

For the remaining coordinates Y i(σ1, σ2), due to the presence of the B-field, we propose

the mixed boundary condition

Jα1 ∂αY
k(σ1, 0) + iBk

l∂1Y
l(σ1, 0) = Ekl ẏ

l(σ1), (2.9)

where Ekl is some invertible matrix which can depend on Y, θi. Its form will be deter-

mined later.

For now, focus on the first term on the r.h.s. of (2.7). For a string which terminates

at the boundary, it is Y i(σ1, 0) = 0. This would imply also ∂1Y
i(σ1, 0) = 0. If β − α ≤ 0,

then we can get rid of this term immediately. If β − α > 0, then this term indeterminate.

To proceed, we consider a limiting process of letting Y → 0. One can get rid of this term

if2 ∂1Y
i = o(Y

β−α

2 ). As in the AdS5 × S5 case, the term hµνJ1
α∂αX

µJ1
α∂αX

ν on the

2We use the symbol f = o(g) to mean lim f/g = 0, i.e. f tends to infinity slower than g or f tends to

zero faster than g. We also use f = O(g) to mean lim f/g = k, 0 ≤ k < ∞. i.e. f tends to infinity not

faster than g or f tends to zero not slower than g or f tends to infinity not faster than g.
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l.h.s. of (2.7) has to vanish near a smooth boundary since otherwise the determinant of

the induced metric will blow up and this will cost an infinite area. Therefore we arrive at

the condition

hµν ẋ
µẋν =

1

Y β−αkijJ1
α∂αY

iJ1
β∂βY

j (2.10)

for a worldsheet which terminates on the boundary Y = 0. In order for the condition to

make sense, one need J1
α∂αY

i to be of the order of Y
β−α

2 .

Before analysing further the boundary condition, let us turn to an analysis of the

divergence in the worldsheet action I and its Legendre transform

Ĩ = I −
∮

dσ1PiY
i. (2.11)

As in the AdS5 × S5 case, the area A may pick up a divergent contribution from the

boundary. This can be seen by writing the metric in the form

GijdY
idY j =

kijθ
iθj

Y β
dY 2 +

1

Y β−2
kijdθ

idθj +
2

Y β−1
kijθ

idθjdY + · · · , (2.12)

where · · · denotes terms coming from the subleading expansion terms in the metric (2.2).

Near the boundary, A picks up the dominant contribution

∫

dY dσ1

√

kijθiθj

Y
α+β

2

√

hµν ẋµẋν + · · · . (2.13)

Since the metric is singular at Y = 0, we introduce a regulator Y = ǫ and evaluate the

regularized action for Y ≥ ǫ. The divergent part of the area is

A =
c

ǫ(α+β)/2−1

∫

dσ1

√

kijθiθj
√

hµν ẋµẋν + · · · , (2.14)

where c−1 := (α + β)/2 − 1 and · · · denotes possible subleading divergent terms. The

B-field coupling can be written as

−i
∫

Bij∂1Y
i∂2Y

j = −i
∫

∂2(Bij∂1Y
iY j) + i

∫

∂2(Bij∂1Y
i)Y j. (2.15)

With the cutoff Y = ǫ, the first term on the r.h.s. contributes the boundary term
∮

dσ1iBijY
i∂1Y

j
∣

∣

Y=ǫ
, (2.16)

which cancels against the B-dependent term from the Legendre transform

PiY
i = GijY

iJ1
α∂αY

j + iBijY
i∂1Y

j. (2.17)

Therefore we can write

Ĩ = ĨA + ĨB, (2.18)

where

ĨA := A−
∮

dσ1 GijY
iJ1

α∂αY
j , (2.19)
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ĨB := i

∫

d2σ ∂2(Bij∂1Y
i)Y j, (2.20)

are the Legendre transform modified contributions of the area and B-coupling term. There

is a reason we group the terms in this way. Note that the term GijY
iJ1

α∂αY
j is of the

order of 1/Y
α+β

2
−1 and is of precisely the same order of divergence as in A. Note also that

A has a dependence in J1
α∂αY

j due to (2.10). Thus it is in principle possible to cancel the

divergence in A using the term
∮

GijY
iJ1

α∂αY
j. On the other hand, the term ĨB depends

on ∂1Y
i. This dependence is different from the other terms. Thus the B-field contribution,

if divergent, corresponds to a new divergence with a different type of functional dependence

on the variables of the theory.

Let us consider a B-field such that

Bij∂1Y
i = o

(

1

Y
α+β

2

)

. (2.21)

This implies that the divergence in ĨB will be subleading compared to ĨA. This condition

also implies that the second term on the l.h.s. of (2.9) behaves asymptotically as

iBk
l∂1Y

l = o(Y
β−α

2 ). (2.22)

Since J1
α∂αY

k is the order of Y
β−α

2 , one can drop the B-term in (2.9). It is convenient to

define Ekl = Y
β−α

2 Λkl and the boundary condition (2.9) can be written as

Jα1 ∂αY
k(σ1, 0) = Y

β−α

2 Λkl ẏ
l(σ1). (2.23)

The Hamilton-Jacobi equation (2.10) becomes

hµν ẋ
µẋν = kijΛ

i
mΛjnẏ

mẏn. (2.24)

This condition will play a key role in the cancellation of the divergences in ĨA. To see this,

note that

GijY
iJ1

α∂αY
j =

1

Y β−1
kijθ

iθjJ1
α∂αY +

1

Y β−2
kijJ1

αθi∂αθ
j + · · · , (2.25)

where · · · denotes the subleading contribution from the asymptotic expansion of the met-

ric (2.2). This is to be compared with the leading divergence
√

kijθiθj ·
√

hµν ẋµẋν/Y
α+β

2
−1

in A, which, using (2.10), can be written as follows:
√

kijθiθj

Y β−1

√

(J1
α∂αY )2kijθiθj + 2Y J1

α∂αY J1
βkijθi∂βθj + Y 2J1

αJ1
βkij∂αθi∂βθj. (2.26)

Obviously (2.25) and (2.26) cannot match in general. Doing so will require an extra

constraint among the derivatives of θi and Y , which, first of all, is not obvious it is in

consistent with the relation (2.10). Moreover this relation does not have any obvious

physical interpretation in field theory. On the other hand there is a particularly simple set

of conditions which guarantee that (2.25) and (2.26) are equal, namely,

kijθ
i = θj, (2.27)

β − α < 2. (2.28)
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In fact the first condition implies immediately kijθ
i∂αθ

j = 0 and hence the vanishing of

the second term in (2.25) and (2.26); while the second condition says that the last term

in (2.26) is subleading compared to the first term. As a result of (2.21), (2.27) and (2.28),

we can write

GijY
iJ1

α∂αY
j =

1

Y β−1
J1
α∂αY + · · · =

1

Y β−1

√

kijJ1
α∂αY iJ1

α∂αY j + · · · (2.29)

near Y = 0, and the Legendre transform contributes the singular terms
∮

dσ1PiY
i =

1

ǫ(α+β)/2−1

∮

dσ1

√

kijΛimΛjn ẏmẏn + · · · , (2.30)

where we have used (2.23). Therefore the leading divergence term in (2.14), (2.30) cancels

if c = 1, i.e. if the leading divergence is linear:

ĨA =
1

ǫ

∮
(

√

hµν ẋµẋν −
√

kijΛimΛjn ẏmẏn
)

+ · · · , (2.31)

and if the Hamilton-Jacobi condition (2.24) holds. Here · · · denotes the subleading con-

tribution from the asymptotic expansion of the metric (2.2). Whether there are further

subleading singularity (like, for example, 1/
√
ǫ or log ǫ type) or not will depend on the

specific details of the asymptotic form of the background metric. Note that since ∂1Y
i is

of order Y , the sufficient condition (2.21) for the ĨB-term to be subleading divergent can

be written as

Bij = o

(

1

Y
α+β

2
+1

)

. (2.32)

On the other hand, if

Bij = o

(

1

Y 2

)

, (2.33)

then the ĨB-term is non-divergent.

Summarizing in a general supergravity background, the B-field coupling in the world-

sheet action generically generates a divergence which cannot be cancelled with the Legendre

transform. A sufficient condition for the B-field contribution to be finite is (2.33). When

there is no such divergence, the leading order divergence in the Wilson loop arises from the

area and it can be cancelled with the application of Legendre transform if the following

conditions are satisfied:

1. supergravity background:

- The supergravity metric takes the asymptotic form (2.2) near the boundary.

Moreover

α+ β = 4, β − α < 2. (2.34)

- The boundary metric hµν is independent of θi. The transverse part of the metric

satisfies the boundary condition

kijθ
i = θj. (2.35)
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These conditions are conditions on the background and do not impose any extra

constraint on the form of the Wilson loop variables.

2. string worldsheet:

The boundary constraint (2.24) for the string worldsheet is satisfied.

In general, once the leading UV divergences are cancelled, there may be further sub-

leading singularity (like, for example, 1/
√
ǫ or log ǫ type). An extensive analysis of them

will need information on the specific details of the asymptotic form of the background

metric, the B-field and the dilaton. Generally we don’t expect the subleading divergences

can be cancelled with the application of Legendre transform.

A special situation with no further subleading divergence is if the leading correction

term in the asymptotic conditions (2.2) and (2.33) are of at least order Y . We will examine

some examples of this kind later.

2.2 Comments: boundary constraint as loop constraint

Just as in the original AdS5 × S5 case, one would like to interpret the boundary con-

straint (2.24) for the open string as a condition in the field theory. Since the Wilson loop is

specified by the loop variables ẋµ and ẏi, and θi does not play any role, the loop constraint

should not depend on θi. This means hµν should be independent of θi. For the same

reason, one should choose Λkm such that kklΛ
k
mΛln is independent of θi. Generally this

can be achieved by taking Λkm of the form

Λkm = Λ̂klM
l
m, (2.36)

where Λ̂kl is the vielbein of the metric kkl and M l
m is an invertible matrix which is

independent of θi but can depends arbitrarily on parameters which have meaning both in

supergravity and in the field theory (e.g. the ’t Hooft coupling or parameters in the theory

such as the β-deformation parameter in the Maldacena-Lunin duality). As a result, the

condition (2.24) takes the form

hµν ẋ
µẋν = aij ẏ

iẏj , i, j = 1, · · · , n (2.37)

where we have defined aij := Mn
iM

n
j. In general the form of the matrix aij will be a

function of the couplings of the theory and cannot be fixed from the supergravity analysis

alone. In the original N = 4 SYM case [9], the matrix aij is given by aij = δij . We have

also computed the constraint for the N = 1 β-deformed superconformal field theory and

find aij = δij up to λ2 order in perturbation theory [16]. We emphasize that in general

the constraint (2.37) has nothing to do with preservation of any supersymmetry. It is

a pure coincidence that this loop constraint also implies a preservation of local Poincare

supersymmetry in the N = 4 SYM theory.

Let us make a consistency check on the boundary constraint (2.37). In the large

N limit of gauge theory, Wilson loop satisfies a closed set of equations called the loop

equation [22]. To further justify the supergravity procedure for the computation of the
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Wilson loop expectation value, one should check that the supergravity ansatz(1.3) satisfies

the loop equation [22]. As in the AdS5 × S5 case, although the leading linear divergence

cancels out when the loop constraint (2.37) is satisfied, the loop variation does not commute

with the constraint and so the linear divergence may gives a divergent contribution and

violate the loop equation. We show this is not the case.

The loop derivative operator is given by

L̂ = lim
η→0

∮

ds

∫ s+η

s−η
ds′
(

δ2

δxµ(s′)δxµ(s)
− aij

δ2

δyi(s′)δyj(s)

)

. (2.38)

That this definition is correct can be confirmed by checking that L̂〈W 〉 = 0 in field theory

for the Wilson loop operator (1.1). As usual the loop regulator η has to be taken much

smaller than the UV cutoff scale ǫ in order to extract the equation of motion terms. Now

acting on the supergravity ansatz (1.3) with the the loop operator, we get the leading term

in large λ,

λ lim
η→0

∮

ds

∫ s+η

s−η
ds′
(

δĨA
δxµ(s′)

δĨA
δxµ(s)

− δĨA
δyi(s′)

δĨA
δyi(s)

)

. (2.39)

Let us now extract the divergent contribution from ĨA in (2.31). Given the condition (2.37),

we can choose a parametrization such that hµν ẋ
µẋν = aij ẏ

iẏj = 1 and get

L̂〈W 〉 =
λη

ǫ2

∮

ds
(

hµν ẍµẍ
ν − aij ÿ

iÿj)
)

. (2.40)

For a smooth loop the terms in the integral are finite. Therefore by taking η going to zero

faster than ǫ2, we find

L̂〈W 〉 = 0 (2.41)

and the loop equation is satisfied.

3. General solution to the conditions on SUGRA background and exam-

ples

3.1 General solution to the metric condition

The condition (2.27) on the metric may look a little restrictive at first sight. We show now

that it is in fact satisfied by a general class of metric of the form

ds2 = H1(Y )dT 2 +H2(Y )d ~X2 + F (Y )dY 2 + gijdθ
idθj, (3.1)

where θi, i, j = 1, · · · , n are the coordinates of the n− 1 dimensional space Xn−1; and the

metric gij is a function of Y i, e.g. as in the Klebanov-Strassler metric [23]. The metric

can be thought as a warped product of the boundary spacetime (T, ~X) and the transverse

space (Y, θi).

Defining Y i = Y θi and making the coordinate transformation we get

gijdθ
idθj =

1

Y 2
(gkl + gijθ

iθjθkθl − gilθ
iθk − gkiθ

iθl)dY ldY k. (3.2)
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So our metric become

ds2 = H1(Y )dT 2 +H2(Y )d ~X2 +GijdY
idY j, (3.3)

where

Gij := F (Y )θiθj +
1

Y 2
Aij , (3.4)

and

Aij := gij + gklθ
kθlθiθj − gilθ

lθj − gjlθ
lθi. (3.5)

The matrix Aij satisfies the following identity,

Aijθ
j = 0, (3.6)

and so

GijY
j = F (Y )Y i (3.7)

Note that (3.7) is of the form of (2.27). Therefore if F behaves as

F (Y ) =
1

Y β
, Y → 0, (3.8)

near the boundary, then the condition (2.27) is satisfied. Therefore if also α + β = 4 and

β − α < 2, then the metric conditions are satisfied.

It is easy to give example where the condition (2.27) is not satisfied. For example, if

we have started with a metric with an additional cross-terms dY dθi

ds2 = H1(Y )dT 2 +H2(Y )d ~X2 + F (Y )dY 2 +Ki(Y )dY dθi + gijdθ
idθj, (3.9)

then under the same coordinate transformation, the additional term takes the form

Ki(Y )dY dθi =
1

Y

(1

2
(θkKl + θlKk) − (Kiθ

i)θkθl
)

dY kdY l :=
1

Y
ξkldY

kdY l. (3.10)

ξkl satisfies the following identities

ξijθ
j =

1

2
(Ki − (Klθ

l)θi), ξijθ
iθj = 0, ξijθ

i∂θj =
1

2
Kl∂θ

l (3.11)

Denote the whole metric as Gij := Hij + Y −1ξij, where Hij is given by the r.h.s. of (3.4).

It is

Gijθ
j = F (Y )θi +

1

2Y
(Ki − (Klθ

l)θi). (3.12)

Since the right hand side is generally not proportional to θi, the condition (2.27) is no

longer satisfied. Note that the cross-terms in (3.9) may be eliminated with a shift of

θi → θi + ai(Y ). However the new θ’s will not satisfy the condition (θi)2 = 1 anymore.

This is another way to see that the metric conditions are not satisfied.

3.2 Examples

Here we examine some backgrounds with known dual field theories, to which our analysis

can be applied.
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Background with AdS5 × X5 metric. This is a standard example. The metric of the

space can be written as

ds2 = U2
3
∑

µ=0

dXµdXµ +
dU2

U2
+ dX2

5 . (3.13)

where X5 is an internal compact space. In this case α = 2 = β and the condition (2.34)

is satisfied. The linear divergence in A is cancelled by the Legendre transform and ĨA
is finite. Some explicit examples are, X5 = S5, S̃5, S̃5

γ1,γ2,γ3 , T
1,1, Y p,q, Lp,q,r, etc.,

where respectively these spaces are the 5-sphere for the original Maldacena AdS/CFT

correspondence [7], the β-deformed 5-sphere for the Lunin-Maldacena β-deformation [17],

the multi-parameter β-deformed sphere [19], and the Sasaki-Einstein spaces [24, 25]. The

boundary condition for the string minimal surface is

Jα1 ∂αY
k(σ1, 0) = Λ̂kmM

m
l ẏ
l(σ1). (3.14)

It is easy to see that ĨB is finite for these cases. In the AdS5 × S5 case or in the

duality with Sasaki-Einstein spaces, there is simply no B-field. In the β-deformation or

the multi-parameters β-deformation, the B-field is of the form

B =
1

2
Babdφ

adφb, (3.15)

where
∑

(µa)
2 = 1, φa (a = 1, 2, 3) are the azimuth angles defined by

Y 1 = Y θ1 = Y µ1 cosφ1, Y 4 = Y θ4 = Y µ1 sinφ1,

Y 2 = Y θ2 = Y µ2 cosφ2, Y 5 = Y θ5 = Y µ2 sinφ2, (3.16)

Y 3 = Y θ3 = Y µ3 cosφ3, Y 6 = Y θ6 = Y µ3 sinφ3

and Bab is a function of µa. This form of the B-field respects the symmetries of the β-

deformed sphere and we will take it to be the B-field where the string is coupled to. In

general one may get a different answer by using a different gauge equivalent B-field. This

is similar to the situation discussed in [21] where an open D3-brane is employed to compute

the expectation value of Wilson loop in higher representation. There the answer is shown

to depend on the gauge choice of the RR 4-form potential C4 which appears in the Wess-

Zumino couping. A symmetry argument was used to suggest the natural form of the C4

to be used.

Obviously the B-term in the worldsheet action is finite. For the piece BijY
i∂1Y

j in

the Legendre transform, since Bij is of order 1/Y 2, this term is potentially linear divergent.

However this does not happen since, as we have shown in [16], a B-field of the form (3.15)

satisfies the condition

BijY
i = 0 (3.17)
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exactly. This can be seen easily by noticing that

dφ1dφ2 =
1

µ2
1µ

2
2Y

4
(Y4Y5dY1 ∧ dY2 + Y1Y2dY4 ∧ dY5 + Y1Y5dY2 ∧ dY4 − Y2Y4dY1 ∧ dY5),

dφ1dφ3 =
1

µ2
1µ

2
3Y

4
(Y4Y6dY1 ∧ dY3 + Y1Y3dY4 ∧ dY6 + Y1Y6dY3 ∧ dY4 − Y3Y4dY1 ∧ dY6),

dφ2dφ3 =
1

µ2
2µ

2
3Y

4
(Y5Y6dY2 ∧ dY3 + Y2Y3dY5 ∧ dY6 + Y2Y6dY3 ∧ dY5 − Y3Y5dY2 ∧ dY6).

As a result, the piece BijY
i∂1Y

j in the Legendre transform is zero. Therefore, there is no

divergence associated with the B-field. This can also be checked using (2.20). For example

the contributions from B12, B15 to ∂2(Bij∂1Y
i)Y j is of the form ∼ Y4(Y2)2

Y 4 ∂1Y1∂2
Y5

Y2
. This

is finite as Y → 0 and so ĨB is free from any divergence. Also since there is no subleading

correction terms to the metric and the B-field, there is no subleading divergence at all.

The Wilson loop is finite.

We remark that the background AdS5 × S̃5
γ1,γ2,γ3 for the multi-parameters β-

deformation is not supersymmetric, but the Wilson loop expectation value is finite. This

clearly shows that supersymmetry or the satisfaction of the BPS condition for the loop is

not what is required for the finiteness of Wilson loop expectation value.

Supergravity background with asymptotically AdS5 ×X5 metric. The first kind

of example is given by a finite temperature deformation of any of the metric above. For

example for N = 4 at finite temperature, the metric is

ds2 = U2

(

−
(

1 − U4
T

U4

)

dt2 + (dXi)2
)

+

(

1 − U4
T

U4

)−1dU2

U2
+ dΩ2

5 (3.18)

Asymptotically, the metric behaves identically to that of the AdS5×S5 background. So the

cancellation of the infinity occurs with the same boundary conditions as in the AdS5 × S5

case. Putting a finite temperature deforms the asymptotic form of the metric with power-

like terms and this does not introduce any additional subleading singularity.

Sakai-Sugimoto QCD model. The background consists of a dilaton, a RR 3-form

potential and the metric [26]

ds2 =

(

U

R

)3/2

(ηµνdX
µdXν + f(U)dz2) +

(

R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)

,

eφ = gs

(

U

R

)3/4

,

f(U) = 1 − U3
KK

U3
. (3.19)

Here Xµ (µ = 0, 1, 2, 3) is the spacetime. z = X5 is periodic and describes the compact

direction of the D4-brane. U > UKK corresponds to the radial direction transverse to the

D4-brane. With the coordinate transformation Y = R2/U , the metric near the boundary

U = ∞ reads

ds2 =

(

R

Y

)3/2

(ηµνdX
µdXν + dz2) +

(

R

Y

)5/2

(dY 2 + Y 2dΩ2
4). (3.20)
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In this case α = 3/2, β = 5/2 and the condition (2.34) is satisfied. The leading UV

divergence is a linear one and it can be cancelled with a choice of the boundary condition

for the string minimal surface

Jα1 ∂αY
k(σ1, 0) = Y 1/2Mk

l ẏ
l(σ1). (3.21)

The vielbein is trivial since kij = δij (i, j = 1, · · · , 5) for the boundary metric. Including

the contribution of the pion field ϕ0, we propose the following form of the Wilson loop

operator for the Sakai-Sugimoto QCD model,

W [C] =
1

N
TrP exp

(
∮

C
dτ(iAµẋ

µ + iϕ0ż + ϕiẏ
i)

)

, (3.22)

and the constraint is

ẋµ
2 = ẏi

2 − ż2. (3.23)

Moreover since the subleading correction terms to the metric is power-like, therefore there

is no further subleading UV divergences.

Klebanov-Strassler background. Another example is the Klebanov-Strassler back-

ground [23] which describes a warped deformed conifold. In this case the asymptotic

behavior of the metric is different from the power ansatz (2.2). However it is not difficult

to repeat our analysis above.

The background has a constant dilaton, a RR 2-form, and the metric and B-field

ds2 = h−1/2m2dxmdxm + h1/2 31/3

24/3
K

[

1

3K3
(dτ2+(g5)

2)+cosh2 τ

2
[(g3)

2+(g4)
2] (3.24)

+ sinh2 τ

2
[(g1)

2 + (g2)
2]

]

,

B =
gsM

2
[fg1 ∧ g2 + kg3 ∧ g4] , (3.25)

where gi is a basis of invariant one-form on T 1,1

g1 =
1√
2
(−s1dφ1 − cψs2dφ2 + sψdθ2), g2 =

1√
2
(dθ1 − sψs2dφ2 − cψdθ2),

g3 =
1√
2
(−s1dφ1 + cψs2dφ2 − sψdθ2), g4 =

1√
2
(dθ1 + sψs2dφ2 + cψdθ2),

g5 = dψ + c1dφ1 + c2dφ2. (3.26)

The B-field respects the symmetries of T 1,1 and we will assume that this is the proper

B-field where the string is coupled to. h, K, f and k are some functions of τ whose form

can be found in [23]. For our purpose, we record their asymptotic form for large τ ,

h = e−
4τ
3 (4τ − 1) +O(τ2e−

10τ
3 ), K = 21/3e−τ/3

(

1 − 4τ

3
e−2τ

)

+O(e−
2τ
3 ),

f → τ − 1

2
− τe−τ +O(τe−2τ ) , k → τ − 1

2
+ τe−τ +O(τe−2τ ). (3.27)
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In this limit, the metric becomes

ds2 = h−1/2(r)dx2 + h1/2(r)ds26, (3.28)

where the radial variable is defined by

r3 = r3se
τ (3.29)

for some resolved scale rs. The warp factor is

h =
1

r4

(

log
r

rs
− 1

4

)

+ o

(

1

r10

(

log
r

rs

)2
)

(3.30)

and ds26 is the cone metric over T 1,1

ds26 = dr2 + r2ds2T 1,1 . (3.31)

The B-field behaves

B = O

(

log
r

rs

)

(s1dθ1dφ1 − s2dθ2dφ2). (3.32)

Putting Y = 1/r, we have near the boundary Y = 0

Gµν =
hµν

Y 2
√

log Y

(

1 +O

(

1

log Y

))

, (3.33)

Gij = kij

√
log Y

Y 2

(

1 +O

(

1

log Y

))

, (3.34)

and

Bij = O

(

log Y

Y 2

)

. (3.35)

Here hµν = ηµν and kij can be worked out using the metric of T 1,1. These details will not

be important for us. Note that the metric (3.24) is of the form (3.1) and so it satisfies the

condition (3.7).

The Hamilton-Jacobi equation (2.7) is replaced by

(log Y )kijJ1
α∂αY

iJ1
β∂βY

j+hµνJ1
α∂αX

µJ1
β∂βX

ν = (log Y )kij∂1Y
i∂1Y

j+hµν∂1X
µ∂1X

ν .

(3.36)

The string boundary condition is given by the same Dirichlet condition (2.8) and mixed

boundary condition (2.9). For a string terminating on the boundary, we have Y i(σ1, 0) = 0.

To get rid of the first term on the r.h.s. of (3.36), we require that ∂1Y
i(σ1, 0) = o(1/

√
log Y ).

This also implies that the B-term in the mixed boundary condition

iBk
l∂1Y

l = o(1). (3.37)

The Hamilton-Jacobi equation in the limit Y → 0 makes sense if J1
α∂αY

i(σ1, 0) is of the or-

der of 1/
√

log Y . Therefore, we can drop the B-term in the mixed boundary condition (2.9)

and write

J1
α∂αY

i(σ1, 0) =
1√

log Y
Λij ẏ

j(σ1). (3.38)
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The Hamilton-Jacobi equation finally gives

hµν ẋ
µẋν = kijΛ

i
mΛjnẏ

mẏn. (3.39)

Now we examine the structure of UV divergences. For the area part, it is easy to

see that we get the same linear divergence (2.31) as before and so ĨA is finite if the loop

condition (3.39) is satisfied. As for the B-field, since ∂2(Bij∂1Y
i)Y j is of the order of

log Y/Y , therefore

ĨB ∼ (log ǫ)2. (3.40)

This is a new divergence which can not be cancelled with the Legendre transform.

4. Discussions

In this paper, we have analysed of the structure of UV divergences in the Wilson loop from

the supergravity point of view by including the effect of a non-trivial metric and a NSNS

B-field. We find that in general there can be new divergences which cannot be cancelled

with the Legendre transform. We also find that when certain conditions are satisfied by

the B-field and the metric, the leading UV divergence becomes a linear one and this can be

cancelled away by choosing the boundary condition of the string appropriately. In general

there may still be divergences associated with the B-field, and if they do exist, there is no

way to cancel them with the Legendre transform. This is similar to the result of [10] which

analysis the effect of a nontrivial dilaton on the structure of UV divergences in Wilson

loop. We conclude that Legendre transform is at best capable of cancelling only linear

UV divergences, but is incapable to cancelling any subleading divergences which may be

present, no matter whether it is due to the dilaton or the NSNS B-field.

We have been concentrating on the structure of UV divergences associated with the

string minimal surface. For Wilson loop in higher representations, a more suitable dual

description is in terms of D3-branes or D5-branes [21, 27 – 33]. Presumably the correspon-

dence will continue to hold for a more general class of gauge/gravity duality. It will be

interesting to analyze the structure of the UV divergences there and to derive the corre-

sponding boundary conditions for the corresponding D-brane description.

Our analysis is performed on the supergravity side. It is an interesting question to check

and confirm the form of the loop constraint (2.37) from the field theory perspective. To do

this, one need to know the form of the Wilson loop operator that is dual to the supergravity

computation. In the simplest case where the field theory has the same number of (adjoint)

massless scalar with the dimension of the internal manifold, the natural candidate for the

operator is a direct generalisation of (1.1). However, the field theory may have different

number of scalar fields in general. This is the case, for example, in the quiver theories

that are dual to backgrounds with Sasaki-Einstein spaces [24, 25]. There the form of the

Wilson loop operator is unknown. In this example one may try to exponentiate a product

of the bifundamental fields in order to construct the Wilson loop. But since scalar field has

dimension one in four dimensions, one needs to compensate the dimension with another

dimensional quantity. This is not completely clear what it might be in a conformal theory.
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It will be interesting to analyze this further and to construct the Wilson loop operator for

these theories.

Finally we end with some remarks on the form of the Wilson loop operator in the

3-dimensional N = 6 supersymmetric Chern-Simons theory [20], where recently the cor-

respondence of Wilson loop has been analysed [34 – 37] (see also [38] for related discus-

sions). The ABJM theory has a U(N) × U(N) gauge and opposite levels k and −k. The

matter fields are bifundamental scalar fields A1, A2 in the representation (N, N̄) and anti-

bifundamental fields B1, B2 in the representation (N̄,N) and fermions. On the field theory

side, a Wilson loop operator which couples to a certain bilinear combination of the bifun-

damental fields has been considered

W [C] =
1

N
TrP exp

[
∮

C
dτ

(

iAµẋ
µ +

2π

k
|ẋ|MI

JY IY †
J

)]

, (4.1)

where Y I = (A1, A2, B̄1, B̄2) and the curve C is a straight line or a circle. For the special

case where C is spacelike and M = diag(1, 1,−1,−1), the operator is 1/6 BPS. In this

case the UV divergences of this operator cancelled in the perturbation theory. It was

also argued [35] that this 1/6 BPS Wilson loop operator describes a string smeared over

a CP 1 in CP 3. The smeared string perserves a SU(2) × SU(2) subgroup of the SU(4)

isometry, which is precisely the amount of R-symmetry preserved by the operator (4.1)

for this particular choice of M . As a smeared configuration, one would not expect to

have a relation like (2.23) to relate the worldsheet boundary conditions with the couplings

of the scalar fields in the Wilson loop. In general one may consider localized string in

CP 3 and ask how it’s boundary condition appears in the Wilson loop. We will consider

a natural proposal in the following. However it turns out the correct operator has to be

more complicated than this.

To describe the string theory on CP 3 (see for example, [39]), it is convenient to use

the complex coordinates wI

4
∑

I=1

wI w̄I = 1, (4.2)

subjected to the constraint

4
∑

I=1

(wI∂αw̄
I − w̄I∂αw

I) = 0, α = 1, 2. (4.3)

This construction is a realization of the Hopf fibration since the first constraint describes

a S7 and the second constraint describes a U(1) symmetry which reduces the embedding

to CP 3. Using this description, one can think about the transverse space to the boundary

spacetime R3 as described by the four coordinates ZI := Y wI where Y is the radial

coordinate of AdS4. In terms of ZI , we have
∑4

I=1 Z
IZ̄I = Y 2 and

4
∑

I=1

(ZI∂αZ̄
I − Z̄I∂αZ

I) = 0, α = 1, 2. (4.4)
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The string boundary condition is then given by the three Dirichlet condition for the longi-

tudinal coordinates and the eight Neumann boundary conditions

Jα1 ∂αZ
I(τ, 0) = żI(τ), I = 1, · · · , 4. (4.5)

Note that the boundary condition (4.5) is consistent with the constraint in (4.4) since

ZI(τ, 0) = 0. In terms of real coordinates Z1 = Y 1 + iY 5, Z2 = Y 2 + iY 6, Z3 = Y 3 +

iY 7, Z4 = Y 4 + iY 8, the embedding reads
∑8

i=1(Y
i)2 = Y 2 and

4
∑

I=1

(Y I∂αY
I+4 − Y I+4∂αY

I) = 0. (4.6)

The boundary condition reads

Jα1 ∂αY
i(τ, 0) = ẏi, i = 1, · · · , 8, (4.7)

where z1 = y1 + iy5, z2 = y2 + iy6, z3 = y3 + iy7, z4 = y4 + iy8.

To write down the Wilson loop, we note that due to the presence of the product gauge

group, there are two independent Wilson loops one can write down. Let us concentrate

for the moment on the first U(N), one can form adjoint fields by multiplying the bi-

fundamental fields in a certain order. It is natural to consider

W =
1

N
TrP exp

(
∮

C
dτ(iAµẋ

µ + ȧabAaĀb + ḃabB̄aBb)

)

(4.8)

where C is a general spacelike curve. This operator is invariant under arbitrary

reparametrization τ → τ̃ , including orientation reversing ones. Since scalar fields in

three-dimensions is of dimension half, the variables aab and bab are of length dimension and

therefore it make sense to try to identify them with the boundary variables zI in (4.5).

Since Aa (or Ba) is a doublet of SU(2)1, AaĀb (or B̄aBb) contains a singlet and a triplet

of SU(2)1. Our proposal is to identify

ȧab =
2
√

2π

k

4
∑

i=1

(σi)abẏ
i, ḃab =

2
√

2π

k

4
∑

i=1

(σi)abẏ
i+4 (4.9)

where σi = (τ1, τ2, τ3, 1) and τ1,2,3 are the Pauli matrices. Note that the ABJM theory

is manifestly invariant under SU(2) × SU(2) of the SU(4) R-symmetry. Therefore (4.8)

respects this symmetry if we assign (y1, y2, y3) (respectively (y5, y6, y7)) to be a triplet and

y4 (respectively y8) to be a singlet SU(2)1 (respectively SU(2)2). For convenience, we have

put a factor of 2
√

2π/k above since the propagator of the gauge bosons and the scalar field

is different. This turns out to be a convenient normalization in perturbation theory. We

remark that the identification (4.9) can also be written as

ȧab + iḃab =
2
√

2π

k

4
∑

I=1

(σI)abż
I (4.10)
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and our proposal for the Wilson loop operator that is dual to a string with the boundary

condition (4.5) is

W =
1

N
TrP exp

[

∮

C
dτ

(

iAµẋ
µ +

2π

k

4
∑

I=1

żIR̄I + ˙̄zIRI
)

]

. (4.11)

Here RI is the composite scalar RI := (AI + iBI)/
√

2 where AI := Aa(σ
I)abĀb, BI :=

B̄a(σ
I)abBb .

By doing a perturbative computation as in, e.g. [35 – 37], one can show that the Wilson

loop is in general linear divergent:

∼ N2

k2ǫ

∫

dτ1(ẋ(τ1)
2 − ẏ(τ1)

2). (4.12)

Therefore the divergence cancels if the loop constraint

ẋ2 = ẏ2 (4.13)

is satisfied. The fact that we obtain precisely the same constraint as obtained from the

Hamilton-Jacobi analysis provides some support that the ansatz (4.11) correctly encodes

the boundary conditions of the dual open string. However this cannot be correct due to

a mismatch. In fact, a half BPS string configuration which is localized at a point in CP 3

has been considered in [35 – 37]. One can show that there is no choice of żI to make (4.11)

half BPS. Even worse, it is easy to show, for the ansatz (4.1) which is coupled to a bilinear

of scalars, there is no choice of the Hermitian matrix M so that there is 1/2 unbroken

supersymmetry. Therefore the correct Wilson loop operator that is dual to localized string

must be more complicated. The understanding of this will be very interesting.
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